
Edward, edMUnD & Edwin: Line-Based Text
Editing for the 21st Century

NATALIA POSTING

editor drone
equa.space

KATIE WOLFE

innocent bystander
katie.host

Abstract

In this paper we demonstrate how the standard text editor, ed(1), can be
adapted into an IRC-based collaborative environment, paralleling modern
IDEs such as Google Docs.

1 Introduction

Despite our best efforts, the human race still finds itself
needing to edit computer files. The history of computer
text editing began with line editors. Bound to the restric-
tion of paper teletypes, such editors worked with entire
lines at a time and, due to the low speed of teletypes of
the time, only sent output when explicitly requested.

Ed(1) is such an editor. Originally designed for the
Unix operating system in 1969, ed(1)’s influence runs
deep in Unix tools such as grep and can still be traced in
modern text editors such as ex. An annotated example
of an ed(1) session follows.

$ ed Start ed(1).
→ e message.txt Open message.txt into the editing buffer.
← 59 The number of bytes read.
→ 1,$p Print from the first line to the final line.
← [03] DAYS
← SINCE LAST TELETYPE INJURY
→ 1s/3/0/p On line 1, replace 3 with 0, printing the fixed line.
← [00] DAYS
→ $a Enter input mode, appending after the last line.
→
→ note: rage-induced accidents not counted
→ quit Oops!
→ arghahjvnfsjv
→ . Exit input mode.
→ quit Try to quit.
← ? (Invalid command suffix.)
→ q oh yeah
← ? (Warning: buffer modified.)
→ q Quit without saving.

Figure 1: A simple ed(1) session. Lines are first addressed, either by themselves
or as ranges; then operations are applied to them; finally, a suffix such as p may
be specified, causing ed(1) to print the line it operated on. Ed(1) is relatively
quiet about all this: even its error messages just tell you that you goofed it.

https://equa.space/
https://katie.host/


Ed(1) remains powerful. Despite better judgement,
the unit of the line serves as the foundation for almost
every software engineering toolset, from the syntax of
modern programming languages to the diff-tracking and
conflict-resolution features of version control systems
like Git. Code can be navigated in ed(1) using the in-
dentation of source files as a guide to their structure;
complex operations can be automated using regular ex-
pressions; and integration with language servers, lin-
ters, and build systems can be achieved with the shell
command, !. But despite its enduring editing prowess,
ed(1) is ultimately limited by the design of its original
environment. Unix was a time-sharing operating sys-
tem: users would pay a fixed fee for rights to use the
machine’s limited facilities during an allotted calendar
period. Real-time collaboration was impossible.

Google Docs is an online, collaborative visual editor
first released in 2006. Owing to the later invention of
the color television (CRT), it allows for rich, colorful
document formatting and provides live feedback the in-
stant a character is typed. Furthermore, Docs allows for
live collaboration and feedback between multiple users
editing the same document. Its real-time iteration and
collaboration capabilities have become a standard for
enterprise software projects and landed Docs an easy
position as the world’s foremost IDE. Google has also
supported being evil since 2018; while ed(1) supports
basic evil, it is ultimately limited in scope to the design
of its original environment.

Despite these limitations, we believe ed(1)’s line-
based model can be adapted to match and even exceed
the performance and feature set of modern IDEs such
as Docs. In Section 2, we introduce our barebones pro-
totype editor used to develop our later designs via the
Internet Relay Chat and research editor interaction. In
Section 3, we describe a failed but insightful initial at-
tempt at modeling shared text files with a graph-like
structure. In Section 4, we detail our final shared edit-
ing model, and in Section 5, we compare it to Docs and
other modern development environments. We conclude
in Section 6 with the potential of future work.

2 Edward

Edward is basically like this little guy. He dutifully sends
lines back and forth between an ed(1) process and any
number of IRC channels. As a direct mirror of ed(1), he
doesn’t distinguish between users or implement multi-
buffer logic—every channel has one shared “head” con-
trolled by all participants at once in a consensus model.

<natalia> edward: a
<katie> edward: .

Figure 2: An example Edward session.

Edward’s model limits the possibilities of collaboration

but can still mirror the popular technique of pair pro-
gramming. Since he only takes input when explicitly ad-
dressed, communication can be done out-of-band within
the editor channel itself, allowing text-only collaboration
without management of a separate chat window. This
mechanism provides the foundation for an experimental
code review technique in which code is reviewed live
while being written. This provides a more theatrical
review process and frees developers from having to read
their own code later.

Overall, IRC is well-suited to interfacing with line-
based programs. Special characters like the tab com-
plicate input and display for most chat clients, but the
IRC protocol itself has no problem handling them. Plac-
ing ed(1) in a networked environment also amplifies
its previously bounded evil capabilities: with a cleverly
crafted commmand, any user can cause Edward to send
an exponentially increasing number of messages to any
unsuspecting chat room.

3 edMUnD

Traditionally, ed(1)’s central data structure took the form
of a doubly linked list of lines. This system models inser-
tions and deletions well for a single user but has difficulty
in the recovery of edit conflicts. Docs works well with
a single shared file and per-character feedback, but an
editor handling entire lines at a time is more likely to run
into conflict. Our first approach involved a simple varia-
tion on the linked list: every line linked to its adjacent
lines, but the links were not required to be bidirectional.

edMUnD (Editor-Drawn Multi-User Non-Euclidean
Dungeon) was our implementation of this model. It
had two commands in addition to those of ed(1). One
would create a “branch,” copying a block of code and
creating unidirectional links back to its context in the
main text file. Once ready to merge again, the second
command would patch the links to point to the new text,
“detaching” whatever was previously in its place.

1

2

3

function main ()

print(nice_message) print(EVIL_message)

end

Figure 3: A new branch of code lurks, undetected.

Being able to continue editing in a detached state was
useful: a user could work without interruption on code
deleted by another, or save breaking changes in a hidden
branch until later. It was also immensely evil: you could
hide an ancient curse or a bad word and nobody would
ever know.



These two basic operations provided more complex
code layout as well. Simple combinations led to non-
trivial results:

1

2

3

4

A

B B∗

C C∗

D

Figure 4: First, a new branch is created off
of the middle two lines. Then only the latter
line is merged back into the original layout.
The result is a graph with no canonical rep-
resentation: the text file reads completely
differently depending on if it is viewed from
the first line or the last.

The development of non-Euclidean text files showed ex-
citing promise in the field of evil (think of inescapable
textual labyrinths) as well as the field of interactive
fiction (think of inescapable textual labyrinths). Unfor-
tunately, the non-linearity of the files ultimately compli-
cated PDF export, so the project was scrapped.

4 Edwin

Our final model, Edwin, uses a hybrid technique, combin-
ing the utility of edMUnD’s branching mechanism and
the stability of linear editing buffers. Inner details of
the model and challenges faced in Edwin’s development
follow.

4.1 Buffers & lines

Edwin’s primary organizational structure is the buffer.
Each buffer is a self-consistent doubly linked list of lines.
New buffers are created during branching operations,
either explicitly via the branch command or implicitly
by other editor operations (e.g. the deletion of a range
of lines). Edwin has a trick up its sleeve that lets it paral-
lel the smooth branching of edMUnD: every buffer con-
tains links to the lines that were before and after it prior
to branching. These links can be addressed directly or
used in commands: the patch command, for example,
attempts to place a buffer back into the original con-
text of its old buffer. The explicit formalization of these
boundaries saves the headache of accidentally creating
paradoxical structures. Commands involving these patch
links fail when the context is destoyed (i.e. if the lines
around the original content are moved into different
buffers and no longer have a path between them).

Lines in Edwin have unique identities; wherever pos-
sible, operations will retain them when modifying their

contents or moving them around. This has the nice effect
of retaining the positions of “heads” (representations of
users in a channel), allowing text editing to go unin-
terrupted even if users remove or rearrange text in the
middle of an operation.

4.2 Line numbering

The classic ed(1) provides one important mechanism
for preventing destructive mistakes: line numbering.
A cowardly user might wish to verify a range (e.g.
?^[fe]?,//) is correct before deleting its contents; to
check it, they can first use the n command to view the
contents and line numbers of the addressed range, then
use the line numbers directly to safely perform the oper-
ation. But in a collaborative environment, line numbers
can silently change in between the two commands, lead-
ing to results as disastrous as getting the address wrong
the first time. Edwin solves this by introducing two spe-
cial line markers for every head called < and >, which
always point to the first and last lines addressed in the
previous command. Using '<,'> instead of line num-
bers, a user can address exactly the same lines as before.

4.3 History

Ed(1) implements one layer of editing history. Users can
undo the last edit done and no more. Modern IDEs fea-
ture unbounded history and occasionally more complex
time-traveling branch systems. Edwin compromises by
implementing zero layers of history. Traditional undo
methods were found to be complicated by the multitude
of simultaneous edits in different locations. Rather, the
function of an edit history is served flexibly by the mes-
sage archive of the IRC channel itself, containing both
edits and out-of-band annotations.

4.4 Extensibility

As part of a full Unix environment, ed(1) provides fea-
tures external to the editor via a command which pro-
cesses text through the shell. This is powerful in a Unix
context but generally disconnected from the network-
ing system Edwin resides in; instead, the recommended
method for scripting Edwin takes place over IRC itself.
Chat bots can interface with Edwin directly, inspecting
data and modifying as appropriate. Given access to the
editor command interface, IRC-based bots have more
power than traditional shell scripts, as they can manipu-
late not only text but the state of the entire editor.

4.5 Incompleteness

The primary barrier to the use and analysis of Edwin is
that I didn’t finish implementing it. In order to continue
research, we construct a model for what Edwin would
look like and use a technique known as “guessing” to



generate precise thought experimental data. We avoid
bias introduced by the variance in data collection by ap-
plying similar techniques to all test environments used
in the editor’s evaluation.

5 Comparison with other IDEs

How does Edwin fare against other development tools?
We evaluate a set of editor environments according to
four criteria: overall efficiency, appearance, synergy, and
evil. As a baseline for Docs and Edwin, our primary con-
tenders, we evaluate two classic editor environments:
Vim over a paper teletype and Microsoft Paint over VNC.

5.1 Efficiency

While basic writing operations are simple in Paint, mov-
ing and replacing text requires manual intervention and
is prone to failure due to Paint’s relatively basic address-
ing system. All of these complications are amplified by
the time required for a full screen refresh. Paint’s in-
eptitude is only second to that of Vim, in which every
keystroke sends dozens of mangled control characters
to the poor, poor teletype output.

Docs does its job great: writing text has a noticeable
network delay, but visual changes render fast on individ-
ual client machines. It supports a wide range of useful
operations and has no problem restructuring large files.
Edwin performs comparably if slightly better: feedback
is only sent when explicitly requested, and moving from
a granular editing system to a line-based one permits
the correction of quick mistakes without network delays.
Edwin’s range of operations is similar to that of Docs,
but is better inclined to complex organization with its
native marks, buffers, and regexen.

5.2 Appearance

The appearance of code written in Paint is entirely dic-
tated by its author. Paint has 24-bit color capability; its
main limiting factor is the ability of the user to not just
handwrite but handwrite with a mouse over VNC. Vim is
somehow worse.

Docs has native rich text support, which permits
users to highlight their code’s syntax however appro-
priate. However, its font selection is limited: only the
Google Fonts repository is available. Edwin supports
rich text by means of IRC’s formatting control characters
and an unlimited range of fonts provided by chat clients.

5.3 Synergy

There is nothing more synergetic than a shared white-
board. Paint is only limited by its single shared drawing
cursor. Vim has no synergy at all—even if it were com-
prehensible, everyone’d have to crowd over the teletype.
Might as well just draw on the paper.

Docs is at the forefront of channeling synergy
through text: it supports the core components of group
collaboration, with live editing, comment threads, and
edit proposals. But it fails to recover synergy when it is
lost—for example, when two simultaneous edits come
into conflict, competing with one another for space in
the finished document. Edwin supports all of Docs’ fea-
tures through a unified chat interface, and its branching
mechanism allows for peaceful resolution of conflicting
simultaneous work.

5.4 Evil

Paint supports evil: you can draw crude pictures wher-
ever you want and, since its undo stack is limited, force
your collaborators to either suffer through the draw-
ings or completely erase whatever they intersected. Vim
doesn’t seem to support evil: certain Vim reimplemen-
tations in other environments are rumored to include it
but were not considered for evaluation.

Google was initially reluctant to support being evil
but faced pressure to allow large enterprises to use the
quickly growing Docs; it eventually removed its evil
restrictions in 2018. While now seeing broad use in
evil, the editing interface is anything but: any malicious
changes can be found and undone with its thorough
history tracker, and drawing unsightly pictures in reg-
ular text documents is tedious. Edwin has supported
evil since its conception, in both its use and its internal
operation. It is easy to not only write swear words but
irreparably overwrite entire documents, exponentially
increase the editor’s used memory, and cause the bot to
flood any IRC channel naïve enough to associate with it.

6 Future work

I sure hope it d7 Future work

It would be nice if the editor existed. Ad-
ditionally, Edwin’s realization lacks a sys-
tem for traditional, long-term collabora-
tion. One potential model would use
email: users could send files containing
Edwin commands to a project maintainer,
who would apply the commands to a cen-
tral repository.

References

[1] IEEE and The Open Group. 2018. ed – edit text.
The Open Base Specifications Issue 7, 2018 edition.
https://pubs.opengroup.org/onlinepubs/
9699919799/utilities/ed.html

w
quit
q
ˆC

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/ed.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/ed.html

	Introduction
	Edward
	edMUnD
	Edwin
	Buffers & lines
	Line numbering
	History
	Extensibility
	Incompleteness

	Comparison with other IDEs
	Efficiency
	Appearance
	Synergy
	Evil

	Future work
	Future work

